Начинаем публикацию статей по расчету кирпичных стен. Прежде, чем приступить к расчетам, необходимо собрать нагрузки. На стены здания в пределах каждого этажа действуют нагрузки от вышележащих этажей, нагрузки от плит перекрытия рассматриваемого этажа и собственный вес отдельных участков стен.

Для начала давайте определимся, какие же нагрузки бывают?

Нагрузки бывают:

- нормативные - их значения приведены в СНиП "Нагрузки и воздействия" .

- расчетные - значения расчетных нагрузок определяются путем умножения нормативных на коэффициент надежности по нагрузке (γ ƒ)

Также они классифицируются на:

- постоянные

- временные , которые в свою очередь бывают:

a. длительными

b. кратковременными

c. особыми

К постоянным относится собственный вес конструкций, который находится путем умножения объема на плотность.

К кратковременным относятся нагрузки от людей, снега, ветра (полные значения) и пр.

К длительным - перегородки, оборудование и пр., а также пониженные кратковременные от людей и снега.

В СНиПе указаны дополнительно особые нагрузки, но в данном примере они нас не интересуют.

Давайте для наглядности представим, что нам необходимо произвести сбор нагрузок на стену первого этажа двухэтажного коттеджа. Высота этажа 3м, длина 6м. Перекрытия железобетонные толщиной 220мм. Для упрощения расчетов принимаем плоскую рулонную кровлю.

Для начала произведем подсчет нагрузок на 1 м 2 перекрытия и покрытия и внесем данные в таблицу. Предположим, что пол второго этажа состоит из стяжки, поверх которой уложен ламинат. Покрытие второго этажа состоит из пароизоляции, утеплителя, цементно-песчаной стяжки и трехслойного гидроизоляционного ковра.

Наименование γ ƒ
Покрытие
Собственный вес плиты покрытия 0,22м*1м*1м*2,5 т/м 3
0,55 1,1 0,61
Пароизоляция из 1 слоя рубероида 0,003 1,3 0,004
Утеплитель из керамзита плотностью 400 кг/м 3 , толщина 100мм 0,04 1,3 0,052
0,054 1,3 0,07
Гидроизоляционный ковер из 3 слоев рубероида 0,01 1,3 0,013
Итого постоянная 0,749
Временная для прочих покрытий (таблица 3, п.9, в) 0,05 1,3 0,065
Временная снеговая (в районе III -180 кг/м 2). Внимание! В СНиП Нагрузки и воздействия дана уже расчетная нагрузка. Нормативная нагрузка определяется путем умножения расчетного значения на 0,7. (μ=1) 0,126 1,4 0,18
Итого временная 0,245
0,994
Перекрытие первого этажа

Собственный вес плиты перекрытия 0,22м*1м*1м*2,5 т/м 3

0,55 1,1 0,61
Цементно-песчаная стяжка толщиной 30мм, плотностью 1800 кг/м 3 0,054 1,3 0,07
Ламинат толщиной 10мм + подложка 3мм 0,008 1,2 0,01
Итого постоянная 0,69
Временная для помещений жилых зданий 0,15 1,3 0,2
Итого временная 0,2
0,89

Теперь нам нужно определить грузовую площадь. Чтобы лучше понять, что такое грузовая площадь, посмотрим на картинку ниже.

Если нагрузка собирается для 1 погонного метра стены, то грузовая площадь будет равна произведению 1-го метра на половину расстояния между наружной и внутренней несущей стеной.

Розовым цветом отмечена грузовая площадь для средней стены, а зеленым цветом - для наружных стен.

Таким образом, для рассматриваемого нами участка кладки грузовая площадь будет равна 1м*2м=2м 2

Перемножив грузовую площадь на значения из таблицы, получим нагрузку от перекрытия и покрытия для 1 погонного метра кирпичной кладки.

От покрытия:

Постоянная - 0,749*2=1,498 т

Временная - 0,245*2=0,49 т

Полная P 2 = 0,994*2=1,988 тонны

От перекрытия:

Постоянная - 0,69*2=1,4 т

Временная - 0,2*2=0,4 т

Полная P 1 = 0,89*2=1,8 тонн

Вес 1 погонного метра равен:

G 2 =1*0,25*3*1,8=1,35 т

G п =1*0,25*0,7*1,8=0,315 т

Полная нагрузка, которая действует на 1 пог.м кладки первого этажа составит:

N=G п +P 2 +G 2 +P 1 =0,315+1,988+1,35+1,8=5,5 т

Для дальнейших расчетов нам также понадобится значение длительной продольной силы. Она равна сумме постоянной нагрузки от перекрытий и покрытий, веса вышележащих стен и длительной временной от перекрытий и покрытий. В нашем примере длительную временную мы не рассматривали.

N g =0,315+1,498+1,35+1,4=4,563 т

Теперь, когда все нагрузки собраны, можно приступать к Расчету стены на прочность.

Статья была для Вас полезной?

Оставьте свой отзыв в комментарии

Статья рассказывает, как выполнить сбор нагрузок на фундамент, а также содержит примеры, как рассчитать нагрузки от каркасно-щитового дома 6х9 с мансардой.

Классификация воздействий на фундамент

Нагрузки на основание бывают постоянные P d и временные (длительные P l , кратковременные P t , особые P s ).

Постоянные P d

Вес частей сооружений, в том числе несущих и ограждающих строительных конструкций.

Временные

Длительные P l

Вес временных перегородок, подливок и подбетонок под оборудование, вес стационарного оборудования, заполняющих его жидкостей, твердых тел и др.

Кратковременные P t

Воздействия от людей (животных, оборудования) на перекрытия, от подвижного подъемно-транспортного оборудования, от транспортных средств и климатические (снеговая, ветровая и т.д.).

Особые P s

Сейсмическое, взрывное воздействие, воздействие от столкновения транспортных средств с частями сооружения, воздействия, обусловленные пожаром или деформациями основания, сопровождающимися коренным изменением структуры грунта.

Таблица 1. Классификация нагрузок

Чтобы правильно рассчитать воздействие на фундамент, необходимо выполнить сбор всех нагрузок. В примерах, приведенных в этой статье, учтены те виды воздействия, которые принципиальны при расчете фундамента из винтовых свай для объектов ИЖС.

Постоянные нагрузки. Как рассчитать вес частей сооружения?

При выполнении расчетов можно также использовать усредненные значения удельного веса конструкций. Для удобства они приведены в таблице 2.


Удельный вес 1 м 2 стены

Каркасные стены толщиной 200 мм с утеплителем

40-70 кг/м 2

Стены из бревен и бруса

70-100 кг/м 2

Кирпичные стены толщиной 150 мм

200-270 кг/м 2

Железобетон толщиной 150 мм

300-350 кг/м 2

Удельный вес 1 м 2 перекрытий

Чердачное по деревянным балкам с утеплителем, плотностью до 200 кг/м 3

70-100 кг/м 2

Чердачное по деревянным балкам с утеплителем плотностью до 500 кг/м 3

150-200 кг/м 2

Цокольное по деревянным балкам с утеплителем, плотностью до 200 кг/м 3

100-150 кг/м 2

Цокольное по деревянным балкам с утеплителем, плотностью до 500 кг/м 3

200-300 кг/м 2

Железобетонное

500 кг/м 2

Удельный вес 1 м 2 кровли

Кровля из листовой стали

20-30 кг/м 2

Рубероидное покрытие

30-50 кг/м 2

Кровля из шифера

40-50 кг/м 2

Кровля из гончарное черепицы

60-80 кг/м 2


Таблица 2. Справочные данные с усредненными значениями удельного веса конструкций дома: стен, перекрытий, кровли.

Согласно п. 4.2. СП 20.13330.2016 расчетное значение нагрузки определяется как произведение ее нормативного значения на коэффициент надежности по нагрузке (γ f ) для веса строительных конструкций, соответствующий рассматриваемому предельному состоянию:

Таблица 3. Таб. 7.1 СП 20.13330.2016

Пример:

Чтобы посчитать вес от стен дома необходимо вычислить их периметр. Периметр наружных стен + внутренние стены: Р=47 м, среднюю высоту стен примем h=4,5 м. Тогда вес от конструкции стен будет равен: Р х h х удельный вес материала стен.

47 м х 4,5 м х 70кг/м 2 = 14 805кг=14,8 т.

Далее посчитаем вес крыши. Принимаем, что вес крыши (деревянная стропильная система с покрытием из металлочерепицы) равен 40 кг/ м 2 (суммарный вес металлочерепицы, обрешетки, стропилы). Тогда вес крыши будет равен: S крыши х удельный вес 1 м 2

92 м 2 х 40 кг/м 2 = 3 680кг=3,7 т.

Также необходимо посчитать вес от перекрытий. Принимаем, что вес деревянного пола вместе с утеплителем будет равен 100 кг/м 2 . Тогда вес от перекрытий будет равен: S перекрытия*удельный вес*количество.

54 м 2 х 0,1 т/м 2 х 2 = 10,8 т.

После того как выполнены все необходимые расчеты, полученный вес сооружения умножаем на коэффициент надежности, о котором мы говорили ранее (в расчете для каркасно-щитового дома коэффициент принимаем равным 1,1 – для деревянных конструкций):

29,3 т х 1,1 = 32,2 т

Нагрузка от самого здания составит 32,2 т. Этот вес принят условно, без вычета дверных и оконных проемов.

Кратковременные нагрузки

От людей (животных, мебели, оборудования) на перекрытия

Так как при проектировании и строительстве невозможно точно определить значение показателя воздействия на перекрытия, к весу конструкции перекрытия добавляют нормативное значение равномерно распределенной нагрузки – Рt (Таблица 8.3 СП 20.13330.2016), действующей на 1 м 2 .

Пример:

Для жилых зданий она равна 1,5 кПа (150 кг/м 2 ). При расчете получаем:

S перекрытия х150 кг/м 2 х количество перекрытий

Нагрузки от людей (животных, мебели, оборудования) на перекрытия = 54 м 2 х 150 кг/м 2 х 2 = 16 200 кг =16,2 т.

Снеговая

Чтобы рассчитать климатические нагрузки на фундамент, нужно учесть снеговой район (вес снегового покрова на 1 м 2 ) и конструктив покрытия здания (чем больше его уклон, тем меньше воздействие). Это требование п.10 СП 20.13330.2016.

Учет района строительства важен, так как вес снегового покрова сильно отличается для разных регионов. Для центральной части Российской Федерации он составляет 180 кгс/м 2 , для значительной части Поволжья – 320 кгс/м 2 , а для отдельных районов Сибири – уже 400 кгс/м 2 .

Рис 1. Карта снеговых районов Российской Федерации

Пример:

S крыши х Расчетный вес снегового покрова х коэффициент уклона покрытия (принимаем равным 0,7 – для наиболее типовых покрытий с уклоном от 30° до 45°)

Для Центральной России получаем:

92 м 2 х 0,18 т/м 2 х 0,7 = 11,6 т

Для районов Поволжья:

92 м 2 х 0,32 т/м 2 х 0,7 = 20,6 т

Для районов Сибири:

92 м 2 х 0,4 т/м 2 х 0,7 = 25,8 т

Ветровая

Рассчитанная ветровая нагрузка может иметь отрицательное значение, это будет означать, что вес надземной конструкции сократился. Поэтому иногда этим показателем пренебрегают.

Но если расчет выполняется для легкого сооружения, характеризующегося большой парусностью, тот же показатель будет иметь принципиальное значение, так как из-за этого может возрасти выдергивающее и горизонтальное воздействие на сваи.

Нормативное значение ветровой нагрузки W н находится по формуле:

W н =0,7 W×k (z) ×c

Где W - расчетное значение ветрового давления, определяемое по картам приложения к СП 20.13330.2016 или по рисунку 1 (значения указаны с коэффициентом 0,7 и без него);

K - коэффициент, учитывающий изменение ветрового давления для высоты z, определяется по таблице 3;

C - аэродинамический коэффициент, учитывающий изменение направления давления нормальных сил в зависимости от того с какой стороны находится скат по отношению к ветру, с подветренной или наветренной стороны.


Рис 2. Районирование территории Российской Федерации по расчетному значению давления ветра (расчетное значение ветрового давления w)


Высота z, м

Не более 5

0,75

0,65

1,25

0,85

0,55

Типы местности:
А – открытые побережья морей, озер и водохранилищ, пустыни, степи, лесостепи, тундра;
Б – городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м;
В – городские районы с плотной застройкой зданиями высотой более 25 м


Таблица 4. Коэффициент k (z) для типов местности

При ветре в скат крыши

Уклон а

15°

30°

45°

60°

75°

При ветре во фронтон

Уклон а

60°

75°

45°

60°

75°


Таблица 5. Коэффициент (с) для двухскатных покрытий при ветре в скат и во фронтон

Коэффициент надежности по ветровой нагрузке g t следует принимать равным 1,4.

Пример:

Преобладающие ветра направлены во фронтон крыши, отсюда аэродинамический показатель для крыши с наклоном ά = 45 равен C = -1,4; Кровля расположена на высоте 10 метров, то есть коэффициент равен 0,65 (городские территории):

Wн =0,7 х 23 кгс/м 2 ×0,65 х (-1,4) = -14,65 кгс/м 2 (знак «-» указывает на усилие, стремящиеся оторвать кровлю от всего здания).

Общее усилие на кровлю составит: 92 х (-14,65 кгс/м 2 ) = - 1 348кгс=-1,35 т.

Сбор нагрузок на фундамент

Суммарное воздействие на фундамент каркасно-щитового дома 6х9 с мансардой: 32,2т + 16,2т. + 21,5 т. + (-1,35т) = 68,55т.


Перед началом расчета любой конструкции мы должны собрать все нагрузки на эту конструкцию. Давайте узнаем, какие бывают нагрузки для расчета гражданских зданий:
1.) Постоянные (собственный вес конструкции и вес вышележащих конструкций, которые опираются на данную);
2.) Временные ;
- кратковременные (снеговые нагрузки, ветровые нагрузки, гололедные нагрузки, вес людей);
- длительные (вес временных перегородок, вес слоя воды);
3.) Особые (сейсмические воздействия, взрывные воздействия, воздействия из-за деформации основания).
Теперь рассмотрим пару примеров. Например, у вас 2-ухэтажное кафе каркасного типа (ж/б колонны) в городе Минске и вам необходимо узнать какая нагрузка идет на колонну. Для начала мы должны определиться, какие нагрузки будут действовать на нашу колонну (рисунок 1 ). В данном случае это будут – собственный вес колонны, собственный вес перекрытия/покрытия, снеговая нагрузка на покрытие, полезная нагрузка на 2-ой этаж и полезная нагрузка на 1-ый этаж. Далее мы должны найти площадь, на которую действуют нагрузки (грузовая площадь, рисунок 2 ).

Рисунок 1 – Схема приложения нагрузок на колонну



Рисунок 2 – Грузовая площадь на колонну

Нормативное значение снеговой нагрузки в г. Минск – 1,2 кПа . Грузовую площадь умножаем на наше нормативное значение и на коэффициент надежности по нагрузке и получаем – 6 м * 4 м * 1,2 кПа * 1,4=43,2 кН . Т.е. только лишь от снега на нашу колонну давит 4,32 тонны!
Нормативное значение полезной нагрузки в обеденных залах (кафе) – 3 кПа . Так же как и со снеговой нагрузкой, мы должны умножить грузовую площадь на значение нормативной нагрузки, на коэффициент безопасности по нагрузке и на два (потому что 2 этажа). Получаем – 6 м * 4 м * 3 кПа * 1,2 *2 этажа= 172,8 кН.
Нормативное значение собственного веса перекрытия будет зависеть от состава перекрытия. Пусть состав перекрытия 1-ого этажа, перекрытия 2-ого этажа и покрытия совпадают и нормативное значение нагрузки равно 2,5 кПа . Его также умножаем на грузовую площадь, на коэффициент надежности по нагрузке и на три этажа. Имеем – 2,5 кПа*6 м*4 м*1,2*3 = 216 кН .
Осталась только нагрузка от собственного веса колонны. Колонна у нас сечением 300х300 мм и высотой 7,2 м. При плотности железобетона 2500 кг/м3 масса колонны будет равна – 0,3 м*0,3 м* 7,2 м* 2500 кг/м3= 1620 кг . Тогда расчетный вес колонны будет равен – 1620 кг * 9,81 * 1,2 = 19070 Н= 19,07 кН.
Если просуммировать все нагрузки, то получим максимальную возможную нагрузку на уровне низа колонны:

43,2 кН + 172,8 кН + 216 кН + 19,07 кН = 451,07 кН.

Таким же образом рассчитывается и, например, ригель. Грузовая площадь на ригель представлена на рисунке 3 .


Рисунок 3 - Грузовая площадь на ригель


Советы:
1.) Давление ветра (в Паскалях) на стену можно определить путем возведения скорости ветра в квадрат (м/с) и умножением на 0,61 .
2.) При наклоне кровли больше 60 градусов – снег задерживаться на крыше не будет.
3.) Нормативное значение полезной нагрузки в квартирах жилых зданиях 150 кг/м2

Для определения нагрузок составляют схемы грузовых площадей и подсчитывают полезную нагрузку и собственную массу конструкций на 1м 2 .В каркасных зданиях нагрузка с выделенных грузовых площадей на уровне каждого перекрытия передается на отдельные колонны, а с колонн - на фундамент. В зданиях с продольными и поперечными несущими стенами подсчитывают нагрузку, приходящуюся на 1 м длины несущей стены на уровне отметки верха фундамента.

Грузовая площадь для ленточного фундамента равна произведению половины расстояния в свету между несущими элементами в одном направлении и расстояния между осями оконных проемов в другом направлении. Для несущих стен без проемов берется любая длина по стене, где возможен более полный учет различных нагрузок (рисунок 2).

Грузовая площадь для фундамента под колонну определяется как произведение половины расстояния между несущими элементами в одном

направлении и половины расстояния между несущими "элементами в другом направлении (рисунок 3). В каркасных сооружениях при расчете оснований и фундаментов учитывают нагрузки от собственной массы ригелей и колонн.

а– с продольными несущими стенами

б– с поперечными несущими стенами

Рисунок 2 – Грузовые площади на ленточные фундаменты зданий

Рисунок 3 – Грузовые площади на фундаменты каркасных зданий

При расчете оснований и фундаментов учитывают также нагрузки от собственной массы фундаментов и давления грунтов.

Подсчет нормативных и расчетных нагрузок ведется обычно в табличной форме (таблица 6).

5 Определение момента по обрезу фундамента

При проверке максимальных и минимальных напряжений по подошве фундамента следует учитывать момент от внецентренного приложения нагрузок первого и вышележащих этажей относительно оси, проходящей через центр тяжести фундамента (рисунок 4).

Рисунок 4 - Схема действия сил

Момент от этажных нагрузок M II), в кНм определяется по формуле

где N п oc т1 – постоянная погонная нагрузка на 1-й этаж, кН;

e 1 – эксцентриситет приложения погонных нагрузок на

1-й этаж, м;

N – сумма погонных постоянных и временных нагрузок на вышележащие этажи и собственная масса стены, кН;

e– эксцентриситет приложения нагрузок вышележащих этажей, м.

Т а б л и ц а 6 – Сбор нагрузок на фундамент по сечению I-I , грузовая площадь

Коэффициент

Коэффициент

Расчетная

На 1 м 2 грузовой

На грузовую

надежности

сочетания

нагрузок

по нагрузке, γ f

3-х слойный рубероидный

ковер на битум. основе

Ж/б плита

Чердачное перекрытие

цем-песч.стяжка, 40 мм

Пароизоляция

Утеплитель

Ж/б плита

Продолжение таблицы 6

Междуэтажное перекрытие

линолеум на мастике

стяжка из цем.-песч.

раствора, 40 мм

панель м/эт. перекрытия

Перегородки

Итого 1-й этаж:

Итого 5-и этажей:

Полезная на чердак

Полезная на перекрытие

1-го этажа

полезная на 5 этажей

с учетом к-та  n 1 = 0.67

Итого полная:

Итого полная на пог. м

Масса стены 1 пог. м

7,2*16,24=116,93

Итого полная на пог. м

Приложение А

Расчет нагрузки на фундамент – важный этап планирования будущего сооружения. Для этих целей можно использовать калькуляторы, которых с таким функционалом немного и для расчета нужно иметь определенные знания. Чтобы не допустить ошибок, лучше использовать специальные нормативные документы, в которых содержатся все правила расчетов. Дальше мы приведем полезную информацию и покажем понятный пример того, как правильно выполнить сбор нагрузки на свайный фундамент.

Из чего начать расчеты?

Чтобы с точностью выполнить сбор нагрузки, нужно поэтапно рассчитать массу элементов всего сооружения: крыши, стен и перегородок.

Вес крыши

Схема нагрузок снеговой массы на кровлю (равномерное, не симметричное, снеговой мешок)

Если сравнивать с другими частями конструкции, то массу кровли стоит рассчитывать по особому принципу:

  • При исчислении ее площади нельзя брать равное значение размерам дома: она больше него на 50 см с каждой стороны, поэтому к длине и ширине приплюсовывается 1 м.
  • На ее общий вес будут влиять осадки, выводить которые в отдельный пункт не имеет смысла.

Используя винтовые сваи для основания или сооружая столбчатый фундамент, все пытаются отказаться от массивных материалов и поступают правильно: такое основание не способно выдерживать большие нагрузки. Поэтому, как пример, рассмотрим несколько самых используемых материалов:

  • Синтетика. Гибкая кровля может иметь разный вес, но среднее значение равно 25 кг/м2 (при этом минимальное равно 8 кг/м2).
  • Металл. Для расчетов принято использовать показатель в 30 кг/м2. Правда в зависимости от вида покрытия, значение веса может варьироваться.
  • Шифер. Такой материал достаточно тяжелый: 50 кг/м2.
  • Натуральная кровля. Вес 1 м2 будет составлять всего 15 кг, но о долгой службе такого покрытия говорить не приходится.


Масса снега, воздействующего на поверхность крыши, а, следовательно, и на столбчатый свайный фундамент рассчитывается не по средним показателям, а по максимальным для определенного региона.

Вес стен


Если используются винтовые сваи или столбчатый фундамент, то скорее всего дом будет строиться из бруса или по каркасной технологии. Для менее габаритных построек могут применяться и другие материалы.

Вес материалов, которые могут выдержать винтовые сваи:

  • Стеновые панели. В таком случае масса на 1 м2 будет равной 40 кг. Используют для экономии на фундаменте и времени работы.
  • Брус. В среднем вес такого материала 90 кг/м2. Используется очень часто. Здание отлично выдерживает столбчатый фундамент, при сооружении которого использовались винтовые сваи.
  • Кирпич. Такой пример встречается редко, но иногда, в силу острой необходимости, имеет место в строительстве. Как правило, из него сооружают дома в 1 этаж – большего веса сваи выдержать просто не способны.

При расчетах учитывайте, что приведенные выше данные взяты на основе стен в 0.15 м. Имея точную ширину собственных стен не составит труда узнать их вес.

Вес перекрытий


Перед тем, как рассчитать нагрузку на фундамент, нужно учесть и массу перекрытий. Как уже неоднократно говорилось, используя столбчатый опорный элемент или винтовые сваи, пытаются снизить нагрузку на основание. Поэтому при сооружении домов на свайном фундаменте для перекрытий используют:

  • Монолит. Масса: около 500 кг/м2. Применяется исключительно в виде цоколя: прибавляет нагрузки и винтовые элементы могут его не выдержать. Срок службы: более века.
  • Дерево с утеплителем. При использовании в качестве цоколя будет иметь вес в 130 кг/м2, а в качестве перегородки этажей – не больше 80 кг/м2. Этот вариант имеет наилучшие характеристики экологичности, но служит мало.
  • Пустотная плита. Не используются как цоколь (не способны выдержать большую нагрузку). Масса: 300 кг. Такой пример веса для междуэтажного использования достаточно тяжелый, но показатели времени службы (больше полвека) заставляют задуматься.

Если хочется выбрать оптимальный вариант времени службы и прочности, то лучше выбрать пустотную плиту, но это требует дополнительного укрепления основания.

Пример: сбор нагрузки на свайное основание


Изучив необходимую информацию, можно начинать проводить расчеты.

Как пример, возьмем дом с такими характеристиками:

  • Количество этажей: 1.
  • Периметр: 20 на 30 м.
  • Длина перестенков: 22 м.
  • Материал дома: дерево.
  • Материал перекрытий: дерево с утеплителем.
  • Материал кровли: натуральные материалы.
  • Расположение: центральная полоса (100 кг м/2 – макс. масса снега).

Сбор нагрузки начинается с расчета площади стен (Пст). Учтите, что внешние шире внутренних в 3 раза. Поэтому Пст = Пвтс + Пвнс.

Пвнс = Пр х 3 х Вс (периметр х 3 х высота стен). Пвнс = ((20+30) х 2) х 3 х 2.7 = 810 м2.

Пвтс = Дс х Вс (длина стен х высота стен). Пвтс = 22 х 2.7 = 160.38 м2

До = Дс + Пр = 22 +100 = 125 м.

Получив значение площади стен, можно проводить сбор их массы:

Мст = Пст х Мбр – масса бруса = 970.38 х 90 = 87 334.2 кг.


Сбор веса перекрытий аналогичен, только пример расчета подразумевает использование горизонтальных данных:

Мпр = Пвнс х Мвнс + Пвтс х Мвтс = 20 х 30 х 80 + 20 х 30 х 130 = 48 000 + 78 000 = 126 000 кг.

Мкр = Мкм + Мос (вес кровельных материалов + вес осадков)

Мкм = (а + 1) х (в + 1) х 15 = 21 х 31 х 15 = 9 765 кг.

Мос = (а + 1) х (в + 1) х 100 = 21 х 32 х 100 = 67 200 кг.

Мкр = 9 765 + 67 200 = 76 965 кг.

Теперь можно узнать общий вес дома:

Мд = Мст + Мпр + Мкр = 87 334.2 + 126 000 + 76 965 = 290 299,2 кг.

Расчет соответствия фундамента массе сооружения


Используя значение массы всего дома, следует узнать, смогут ли винтовые сваи выдержать его массу.

Возьмем уровень сопротивления сухой глины из таблицы ниже. Он равен 25 000 кг/м2.

Сопротивление суглинистых грунтов

Вес бетона для свай постоянный – 2400 кг/м3.

Вес наших опор: 2.5 м. Диаметр: 0.5 м.

Измеряем площадь соприкосновения с грунтом:

3.14 х 0.05 = 0.157 м2. Переводим в объем и получаем 0.314 м3

Мопоры = 0.314 х 2400 = 753.6 кг

Будет установлена 1 опора на каждый метр длины (До х 1 = 125 опор)

М всех опор = 125 х 753.6 = 94 200 кг

Вес дома с основанием = 94 200 + 290 299,2 = 384 499.2


Площадь всех опор 125 х 0.314 = 39.25 м2, что позволяет выдерживать массу сооружения = 39.25 х 25 000 (сопротивление глины) = 981 250.

Из приведенного примера получается, что расчет нагрузки на основание дал понять о неверном выборе высоты погружения и диаметра свай. Основание способно выдерживать дом с массой в 2.5 раза больше. Чтобы найти оптимальные данные, нужно провести сбор нагрузки еще раз, предварительно уменьшив длину и диаметр свай.

Как видите, выполнить расчет нагрузки на фундамент и рассчитать соответствие запланированного основания достаточно просто, особенной если речь идет об использовании свайных элементов. Но такое основание лучше использовать только для возведения легких сооружений.

Расчет нагрузки для фундамента из винтовых свай обновлено: Февраль 26, 2018 автором: zoomfund