Морфология микроорганизмов – это наука, изучающая их форму, строение, способы передвижения и размножения.

Микробы, наиболее часто встречающиеся в процессе приготовления пищи, делят на бактерии, плесневые грибы, дрожжи и вирусы. Большинство микробов - одноклеточные организмы, размер которых измеряется в микрометрах - мкм (1/1000 мм) и нанометрах - нм (1/1000 мкм).

Бактерии.

Бактерии - одноклеточные, наиболее изученные микроорганизмы размером 0,4-10 мкм. По форме бактерии бывают шаровидные, палочковидные и извитые (рис. 1). Бактерии шаровидной формы называются кокками.

В зависимости от размеров и расположения клеток встречаются микрококки (одиночные клетки), диплококки (группа из двух клеток), стрептококки (в виде цепочки клеток), стафилококки (скопления клеток в виде виноградной грозди). Размеры клеток шаровидных бактерий составляют 0,2-2,5 мкм.

Палочковидные бактерии встречаются в виде одиночных палочек, а также в виде двойных и соединенных в цепочку.

Разнообразием форм клеток отличаются извитые бактерии, которые имеют различные длину и толщину. К ним относятся вибрионы, спириллы, спирохеты.

Длина палочковидных и извитых бактерий от 1 до 5 мкм.

Размеры и форма бактерий могут изменяться в зависимости от различных факторов внешней среды.

Строение бактериальной клетки.

От внешней среды клетка отделена плотной оболочкой - клеточной стенкой. На долю клеточной стенки приходится от 5 до 20 % сухого вещества клетки. Клеточная стенка является каркасом клетки, придает ей определенную форму, предохраняет от неблагоприятных внешних воздействий, участвует в обмене веществ клетки с окружающей средой.

Наружный слой оболочки у многих бактерий может ослизняться, образуя защитный покров - капсулу.

Основной частью клетки является цитоплазма - прозрачная, полужидкая вязкая белковая масса, пропитанная клеточным соком. Цитоплазма предохраняет клетку от механических повреждений и высыхания. В цитоплазме находятся запасные питательные вещества (зерна крахмала, капельки жира, гликоген, белок) и другие клеточные структуры. В цитоплазме находятся мембранные структуры - мезосомы. В мезосомах имеются ферменты. В цитоплазме находится ядерный аппарат бактериальной клетки, который называется нуклеоидом. Он представляет собой двойную спираль ДНК в виде замкнутого кольца.

У некоторых бактерий имеются жгутики. Жгутики - это тонкие, спирально закрученные нити. С помощью жгутиков некоторые виды бактерий могут активно передвигаться. Шаровидные бактерии (кокки) неподвижны. Подвижны некоторые виды палочковидных бактерий и все извитые. Бактерии могут передвигаться с помощью ресничек.

Цитоплазматическая мембрана отделяет от клеточной стенки содержимое клетки. Она полупроницаема и играет важную роль в обмене веществ между клеткой и внешней средой.

В цитоплазме содержатся также рибосомы и различные включения. Рибосомы в цитоплазме представлены в виде мелких гранул. Они состоят примерно наполовину из рибонуклеиновой кислоты (РНК) и белка. РНК участвует в синтезе белка.

Размножение. Бактерии размножаются бесполым путем, главным образом простым делением клетки на две части.

Размножение происходит при благоприятных условиях. Характерной особенностью размножения бактерий является быстрота протекания процесса. Продолжительность размножения бактерий от 30 минут до нескольких часов. Названия микроорганизмов состоят из двух латинских слов, первое означает род, второе - вид.

Некоторые палочковидные бактерии при неблагоприятных условиях образуют споры (сгущенная цитоплазма, покрытая плотной оболочкой). Споры не нуждаются в питании, не способны размножаться, но сохраняют свою жизнеспособность при высоких температурах, высушивании, замораживании в течение нескольких месяцев (палочка ботулинуса) или даже многих лет (палочка сибирской язвы). Споры погибают при стерилизации (нагревании до 120°С в течение 29 мин). В благоприятных условиях они прорастают в обычную (вегетативную) бактериальную клетку. Спорообразующие бактерии называются бациллами.

Грибы составляют большую группу организмов, которые выделены в отдельное царство Микота (Mycota). Грибы широко распространены в природе. Грибы являются эукариотами. В царство грибов входят микроскопические мицелиальные грибы (плесневые грибы).

Строение. Клетки плесневых грибов имеют форму вытянутых переплетающихся нитей - гифов толщиной 1 - 15 мкм, образующих тело плесени - мицелий (грибницу), состоящий из одной или многих клеток. На поверхности мицелия развиваются плодовые тела, в которых созревают споры.

Строение. Клетки микроскопических грибов имеют вытянутую форму и называются гифами. Переплетаясь, нитеобразные гифы образуют тело гриба в виде ваты, пуха и других подобных образований, которое называется грибницей, или мицелием. Мицелий состоит из двух частей: верхней плодоносящей и нижней, которая служит для прикрепления к питательной среде -субстрату - и питания гриба. Грибы видны невооруженным глазом.

Клетки мицелия имеют клеточную стенку, которая обладает защитными свойствами. Клеточная стенка также определяет форму клетки. Внутри клетка заполнена цитоплазмой, в которой находятся ядра, рибосомы, митохондрии и вакуоли.

Ядра регулируют процесс обмена веществ, размножение и передачу наследственных признаков. Рибосомы являются центром синтеза белков, а в митохондриях протекают энергетические процессы. Вакуоли - это полости круглой формы, заполненные клеточным соком, где откладываются запасные питательные вещества (гликоген, жир, волютин).

Размножение. Микроскопические грибы размножаются в основном двумя способами: бесполым (вегетативно) и половым.

При бесполом размножении формируются споры.

При половом размножении сначала происходит слияние двух близлежащих клеток. Затем процесс размножения протекает у различных видов грибов по-разному. У одних образуется клетка, называемая зиготой, которая затем прорастает. У других грибов образуется плодовое тело, внутри которого развиваются сумки (аски) со спорами. Попадая в благоприятные условия, споры созревают, сумка разрывается. Споры грибов очень устойчивы к внешним воздействиям, они могут в течение нескольких лет сохранять жизнеспособность.

Микроскопические грибы для своего развития требуют наличия кислорода, т. е. являются аэробами и размножаются только при доступе воздуха! Оптимальными условиями для их размножения является температура 25-35 °С и относительная влажность воздуха 70-80 %.

По строению клетки плесневых грибов отличаются от бактериальных клеток тем, что имеют одно или несколько ядер и вакуолей (полостей, заполненных клеточной жидкостью).

Дрожжи относятся к эукариотным микроорганизмам. Они составляют большую группу одноклеточных неподвижных микроорганизмов, широко распространенных в природе. Большинство дрожжей относятся к классу грибов - аскомицетовПо форме дрожжи бывают круглые, овальные, яйцевидные и удлинённые. Размеры дрожжевых клеток от 2 до 12 мкм.

Дрожжи широко распространены в природе. Они способны расщеплять (сбраживать) сахара в спирт и углекислый газ.

Строение клеток. Дрожжевые клетки отделены от внешней среды клеточной стенкой. Она защищает клетку от неблагоприятных воздействий и определяет ее форму. Под клеточной стенкой находится цитоплазматическая мембрана, играющая большую роль в обмене веществ. Клетка заполнена цитоплазмой, в которой находятся ядро, митохондрии, рибосомы, вакуоли.

Ядро окружено двойной мембраной. Функциями ядра являются регулирование процессов обмена веществ и других химических процессов в клетке, передача наследственных признаков.

Митохондрии - это мелкие частицы различной формы. В них протекают энергетические процессы и запасается энергия.

Рибосомы - мельчайшие тельца, являющиеся центром синтеза белка. Вакуоли представляют собой пузырьки, заполненные клеточным соком. Внутри вакуолей находятся запасные вещества - жиры, углеводы (гликоген), волютин.

Размножение. Дрожжи при благоприятных условиях размножаются двумя способами: бесполым, или вегетативным (почкование), и половым (спорообразование).

Вегетативное размножение протекает следующим образом. Сначала на исходной (материнской) клетке образуется небольшой бугорок - почка, которая по мере роста увеличивается в размерах. Одновременно с этим происходит деление ядра на две части. Одно из ядер с частью цитоплазмы и другими элементами клетки переходит в молодую (дочернюю) клетку.

По мере роста дочерней клетки перетяжка, которая соединяет ее с материнской клеткой, сужается, таким образом, дочерняя клетка как бы отшнуровывается, а затем отрывается и отделяется от материнской. Этот процесс протекает за несколько часов.

Спорообразование может происходить также путем слияния двух вегетативных клеток с образованием зиготы, в которой затем образуются споры, прорастающие в вегетативные клетки. Далее они размножаются почкованием.

Вирусы - это микроорганизмы очень маленьких размеров от 35 до 125 нанометров, поэтому их можно обнаружить только с помощью электронного микроскопа.

По форме вирусы бывают округлыми, спиралевидными, а также в виде палочек и многогранников. Они имеют простое строение и различны по химическому составу.

Вирусы не имеют клеточной структуры. Они устойчивы к высушиванию и к воздействию низких температур. Разрушение их происходит при нагревании до 60-80 °С.

Вирусы вызывают ряд тяжелых заболеваний: оспу, корь, полиомиелит, грипп и др. Проникая в клетки хозяина, вирус размножается, вызывая их гибель.

Вопросы для самоконтроля

1. Бактерии. Строение. Классификация. Размножение.

2. Грибы. Строение. Классификация. Размножение.

3. Дрожжи. Строение. Классификация. Размножение.

4. Вирусы. Строение. Классификация. Размножение.

Введение

Микробиология Ї наука о мельчайших, невидимых невооруженным глазом организмах, названных микробами или микроорганизмами. Она изучает закономерности их жизни и развития, а также изменения, вызываемые ими в организме людей, животных, растений и в неживой природе. Развитие микробиологии, как и других научных дисциплин, находится в тесной зависимости от способов производства, запросов практики, общего прогресса науки и техники.

Целью микробиологии как науки есть изучение систематики, морфологии (формы и строения) и физиологии (жизнедеятельности) микроорганизмов, методов их выделения и распознавания, а также выяснения их значения в природе и возможностей применения в различных сферах деятельности человека.

Микробиологический контроль на пищевых производствах представляет собой все методы исследования и контроля, связанные с определением степени бактериальной обсеменённости контролируемого объекта, а также методы количественного учёта микрофлоры.

Морфология бактерий

Форма бактерий

Подавляющее большинство известных бактерий имеют форму или сферы (шаровидные), или цилиндра (палочковидные), или спирали. Шаровидные бактерии (рис. 1.) бывают одиночными (кокки), соединенными по две клетки (диплококки), по четыре клетки (тетракокки), в длинные цепочки (стрептококки), в пакеты (сарцины), в виде скоплений неправильной формы (стафилококки). Палочковидные бактерии (рис. 1.) различаются по величине отношения длины клетки к ее поперечному размеру. У коротких палочек это отношение так мало, что их трудно отличить от кокков они подразделяются на бактерии (не образующие споры) и бациллы (образующие споры). Бактерии спиралевидной формы характеризуются разным числом витков спириллы имеют от одного до нескольких витков, вибрионы выглядят как изогнутые палочки, их можно рассматривать как неполный виток спирали.

С развитием микроскопической техники и усовершенствованием методов подготовки препаратов открыты другие экзотические формы бактерий. Некоторые бактерии имеют вид сомкнутого или разомкнутого кольца, у некоторых видны клеточные выросты (простеки), число которых колеблется от 1 до 8 и больше, обнаружены бактерии червеобразной формы, похожие на кристаллы, и т.п.

Строение бактериальной клетки

Бактериальная клетка имеет очень сложную гетерогенную и вместе с тем строго упорядоченную структуру. В общих чертах строение бактериальной клетки не отличается от строения клетки высших организмов. Клетка как универсальная единица жизни оказалась настолько совершенной формой организации живой материи, что в процессе эволюции от одноклеточных до высших многоклеточных организмов она сохранила все основные черты своего строения, а, следовательно, и функции.

Рисунок 1. Формы бактерий. Шаровидные: а - микрококки, б - стрептококки, в - диплококки, г - стафилококки, д - сарцины; палочковые: е - бактерии, ж - быциллы, з,и - извитые, к - спириллы.

На рис. 2. представлена схема строения бактериальной клетки известного цитолога В.И. Бирюзовой. Форма бактериальной клетки определяется жесткой (ригидной) клеточной стенкой, которая придает клетке определенную, наследственно закрепленную внешнюю форму. На клеточной стенке бактерий находятся так называемые поверхностные структуры: капсула, жгутики, половые ворсинки, реснички. Под клеточной стенкой расположена цитоплазматическая мембрана (ЦПМ), которая отграничивает цитоплазму клетки. Цитоплазматическая мембрана вместе с цитоплазмой называется протопластом. Все слои, располагающиеся с внешней стороны от цитоплазматической мембраны, называют клеточной оболочкой.

Клеточная стенка.

У прокариот клеточная стенка состоит из пептидогликана, которого нет в эукариотных клетках. В зависимости от строения клеточной стенки прокариоты подразделяются на две группы: грамположительные и грамотринательные. Такое подразделение основано на различии в способе окраски, предложенном в 1884 г. датским ученым X. Грамом. Клеточные стенки грамположительных и грамотрицательных прокариот резко различаются как по химическому составу, так и по ультраструктуре.

Рис. 2. Схема строения бактериальной клетки: О - оболочка клетки; ЦМ - цитоплазматическая мембрана; М - митохондрия (мезосома); Ж- жировые включения; ЯВ - ядерная вакуоль; ДНК - нити ДНК; ЭС - эргастоплазматическая система; Р - рибосомы; В - волютин; Г - гликоген

В клеточной стенке грамположительных бактерий содержится 50... 90 % пептидогликана, грамотрицательных бактерий -- 1... 10 % пептидогликана. Кроме пептидогликана в клеточной стенке грамположительных прокариот содержатся уникальные химические соединения -- тейхоевые кислоты. На долю клеточной стенки прокариот приходится от 5 до 50 % сухих веществ клетки.

Клеточная стенка прокариот выполняет разнообразные функции: механически защищает клетку от воздействий окружающей среды, обеспечивает поддержание ее внешней формы, дает возможность клетке существовать в гипотонических растворах. В клеточной стенке расположены каналы, или диффузионные поры, для пассивного транспортирования веществ и ионов в клетку.

Клеточная стенка препятствует проникновению в клетку токсических веществ. На внешней стороне клеточной стенки расположено много макромолекул, контактирующих с окружающей средой: специфические рецепторы для фагов, антигены, макромолекулы, обеспечивающие межклеточные взаимодействия при конъюгации, а также между патогенными бактериями и клетками и тканями высших организмов.

Поверхностные структуры.

У бактерий снаружи клеточной стенки есть капсула (рис. 3.) -- слизистое образование, обволакивающее клетку, сохраняющее связь с клеточной стенкой и имеющее аморфное строение. В зависимости от толщины капсулы бывают микрокапсулы (толщина меньше 0,2 мкм) и макрокапсулы (толщина больше 0,2 мкм). Капсулы защищают клетку от механических повреждений, высыхания, создают дополнительный осмотический барьер, служат препятствием для проникновения фагов. Иногда капсула служит источником запасных питательных веществ. Слизь помогает прикреплению клеток к различным поверхностям. В настоящее время способность некоторых бактерий синтезировать капсулы (своеобразные внеклеточные полимеры) используют на практике в качестве заменителей плазмы крови и для получения синтетических пленок.

Рис 3.

Многие бактерии неподвижны, если же они способны передвигаться, то это движение обеспечивается жгутиками - структурами, расположенными на поверхности клеток. Число, размеры и расположение жгутиков, как правило, являются признаком, постоянным для Данного вида (рис. 4.), и имеют таксономическое значение. Без жгутиков способны передвигаться только скользящие бактерии и спирохеты. Обычно толщина жгутика составляет 15-20 нм, длина 3-15 мкм. Бактерии со жгутиками могут двигаться очень быстро, например Bac. megaterium со скоростью 16 мм/мин, Vibro cholerae - 12 мм/мин.

Рис. 4.

При полярном расположении жгутиков они действуют подобно корабельному винту и проталкивают клетку в окружающей жидкой среде. Вращательное движение жгутика происходит за счет базального тела. Жгутики вращаются сравнительно быстро. У спирилл они совершают около 3000 об/мин, что близко к скорости среднего электромотора. Вращение жгутиков вызывает и вращение клетки с 1/3 этой скорости в противоположном направлении.

Перитрихиально расположенные жгутики Е. coli работают как один хорошо скоординированный спиральный пучок и проталкивают клетку через среду обитания (рис. 4.).

Изучение жгутиков в электронном микроскопе показало, что они состоят из трех частей (рис. 5.). Основную массу жгутика составляет длинная спиральная нить (фибрилла), переходящая у поверхности клеточной стенки в утолщенную изогнутую структуру -- крючок. Нить с помощью крючка прикреплена к базальному телу, которое представляет собой систему из двух или четырех колец (L, Р, Sw. M), нанизанных на стержень, являющийся продолжением крючка.

Рис. 5.

В последнее время достигнуты большие успехи в расшифровке механизма движения прокариот. Прокариотная клетка обладает механизмом, позволяющим превращать электрохимическую энергию непосредственно в механическую. Кроме жгутиков на клеточной стенке прокариотной клетки могут быть половые ворсинки и реснички в виде различной длины выростов (рис. 6).

Рис. 6. Типы волосинок E.coli: F - жгутики, S - половые ворсинки (F-like sexpili), C - реснички.

Цитоплазматическая мембрана.

Под клеточной стенкой расположена цитоплазматическая мембрана, являющаяся обязательным структурным элементом любой клетки, нарушение целостности которого приводит к потере клеткой жизнеспособности. На долю ЦПМ приходится 8... 15 % сухого вещества клетки. ЦПМ -- это белково-липидный комплекс и небольшое количество углеводов.

ЦПМ выполняет разнообразные функции с помощью специальных переносчиков, называемых транслоказами. Через мембрану осуществляется специальный перенос различных органических и неорганических молекул и ионов.

В ЦПМ локализованы многие ферменты. ЦПМ является основным барьером, обеспечивающим избирательное поступление в клетку и выход из нее разнообразных веществ и ионов.

У прокариот описаны локальные впячивания ЦПМ, которые называются мезосомами. Мезосомы различаются размерами, формой и локализацией в клетке. Считается, что с мезосомами связано усиление энергетического метаболизма клеток.

Цитоплазма.

Содержимое клетки, окруженное ЦПМ, называется цитоплазмой. Цитоплазма имеет гомогенную консистенцию и содержит набор растворимых РНК, ферментов, продуктов и субстратов метаболических реакций. В цитоплазме расположены разнообразные структуры: рибосомы, генетический аппарат (ДНК) и включения разной химической природы и функционального назначения.

Рибосомы -- рибонуклеопротеидные частицы размером 15-20 нм. Их число в клетке зависит от интенсивности процесса синтеза белка. В быстрорастущей клетке Escherichia coli содержится приблизительно 15000 рибосом. Синтез белка осуществляется агрегатами, состоящими из рибосом, молекул информационных и транспортных РНК, называемых полирибосомами. Генетический аппарат прокариотной клетки представлен одной молекулой ДНК, имеющей форму ковалентно замкнутого кольца и получившей название бактериальной хромосомы. Длина молекулы ДНК в развернутом виде может составлять более 1 мм, т.е. почти в 1000 раз превышать длину бактериальной клетки. Генетический аппарат прокариотной клетки называют нуклеоидом.

В цитоплазме прокариот расположены различные включения, часть которых выполняет функцию запасных питательных веществ, представленных полисахаридами, липидами, полипептидами, полифосфатами, отложениями серы. Полисахариды -- это гликоген, крахмал, гранулеза (крахмалоподобное вещество). Чаще встречаются у представителей анаэробных споровых бактерий группы клостридиев. В неблагоприятных условиях они используются в качестве источников углерода и энергии. Липиды накапливаются в виде гранул, состоящих из полимера в-оксимасляной кислоты. У некоторых прокариот, окисляющих углеводороды, поли-в-оксимасляная кислота составляет до 70 % сухого вещества клетки.

Липиды служат для клетки хорошим источником углерода и энергии. Полифосфаты, также накапливающиеся в виде гранул, называются волютиновыми и используются клетками как источник фосфора. Для бактерий, осуществляющих хемосинтез за счет окисления сероводорода, характерно накопление в клетках молекулярной серы. Все накопленные (запасные) вещества, представленные в виде высокомолекулярных полимерных молекул, отграничены от цитоплазмы белковой мембраной.

Пигменты бактерий

Колонии многих бактерий ярко окрашены. Способность к синтезу пигментов обусловлена генетически. Среди пигментов бактерий встречаются каротиноиды, феназиновые красители, пирролы, азахиноны, антоцианы и др.

Пигменты защищают клетки от светового повреждения и используют свет для фотосинтеза. У многих микроорганизмов образование пигмента идет только на свету. Например, ярко-красная окраска колоний у Serratia marcescens обусловлена присутствием пигмента продигиозина. Бактерии Pseudomonas indigofem, Cotynebacterium insidiosum, Arthrobacter atrocyaneus и др. синтезируют индигоидин -- нерастворимый в воде синий пигмент, выделяемый в среду. Chromobacterium violaceum образует сине-фиолетовый пигмент виолацеин, нерастворимый в воде. Виолацеин является производным индола, образующегося при окислении триптофана. Pseudomonas aeruginosa образует пигмент никс-пиоцианин. Различные штаммы псевдомонад образуют такие пигменты, как Феназин-1-карбоновую кислоту, оксихлорофин, иодинин, а иногда все пигменты вместе.

Все пигменты относятся к вторичным метаболитам, т.е. они не принадлежат к тем соединениям, которые имеются у всех организмов, и являются производными обычных метаболитов или структурных компонентов клетки. Некоторые пигменты обладают антибиотическими свойствами, так что многие пигментированные микроорганизмы являются продуцентами антибиотиков.

Рост и способы размножения бактерий

Рост прокариотной клетки -- это согласованное увеличение количества всех химических компонентов, из которых она построена. Рост является результатом множества скоординированных биосинтетических процессов, находящихся под строгим регулярным контролем, и приводит к увеличению массы и размеров клетки. Рост клетки не беспределен. После достижения определенных (критических) размеров клетка подвергается делению. Для большинства прокариот характерно равновеликое бинарное поперечное деление, приводящее к образованию двух одинаковых дочерних клеток.

У большинства грамположительных бактерий деление происходит путем синтеза поперечной перегородки, идущей от периферии к центру. Поперечная перегородка формируется из ЦПМ и пептидогликанового слоя. Наружные слои синтезируются позднее.

Клетки большинства грамотрицательных бактерий делятся путем перетяжки. Например, у Е. coli на месте деления обнаруживается постепенно увеличивающееся и направленное внутрь искривление ЦПМ и клеточной стенки.

Вариантом бинарного деления является почкование, при котором на одном из полюсов материнской клетки образуется маленький вырост (почка), увеличивающийся в процессе роста. Постепенно почка достигает размеров материнской клетки и отделяется от нее. Почкующиеся клетки подвергаются старению. При равновеликом бинарном делении материнская клетка дает начало двум дочерним клеткам, а сама исчезает. При почковании материнская клетка дает начало дочерней клетке и между ними можно обнаружить морфологические различия. Деление прокариотной клетки начинается, как правило, спустя некоторое время после завершения цикла деления ДНК.

Спорообразование бактерий

Вегетативные клетки многих прокариот для перенесения неблагоприятных условий образуют специальные клетки (эндоспоры), обладающие повышенной устойчивостью. В основе морфологического дифференцирования лежат биохимические процессы, запрограммированные соответствующей генетической информацией. Образование эндоспор происходит у прокариот и грибов.

Эндоспора формируется внутри материнской клетки (спорангия), обладает специфическими структурами: многослойными белковыми покровами, наружной и внутренней мембранами, кортексом (рис. 7.). Эндоспоры устойчивы к повышенным температурам, дозам радиации, которые детальны для вегетативных клеток. К спорообразующим бактериям относится большое число прокариот из 15 родов, среди которых есть палочковидные, сферические, спириллы и нитчатые организмы. Все они имеют клеточную стенку, характерную для грамположительных прокариот. В каждой бактериальной клетке образуется, как правило, одна эндоспора.

Лучше всего процесс спорообразования изучен у представителей родов Bacillus и Clostridium. Перед спорообразованием происходит деление ДНК вегетативной клетки. Образуется тяж вдоль длинной оси клетки, затем приблизительно 1/3 тяжа отделяется и переходит в формирующуюся спору в одном из полюсов клетки. Затем происходит уплотнение цитоплазмы, которая вместе с ДНК обособляется от остального содержимого клеток с помощью перегородки. Перегородка формируется путем впячивания ЦПМ от периферии к центру, где срастается, и образуется споровая оболочка. Отсеченный участок «обрастает» второй мембраной и образуется проспора. На следующем этапе между мембранами проспоры начинает формироваться кортекс, а снаружи синтезируются споровые покровы, состоящие из нескольких слоев.


Рис. 4 а и б -образование септы, в и г -окружение протопласта споры протопластом материнской клетки, д образование кортекса и оболочек споры; е -схема строения зрелой споры: 1 - экзоспориум, 2 - наружная оболочка споры; 3 - внутренняя оболочка споры, 4 - кортекс; 5 -клеточная стенка зародыша, 6 -цитоплазматическая мембрана, 7 -- цитоплазма с ядерным веществом

У многих бактерий поверх покровов эндоспоры формируется еще одна структура -- экзоспориум, структура которого зависит от вида бактерий. У прокариот из рода Clostridium обнаружены придатки на экзоспориуме различного строения, иногда весьма причудливого (рис. 8.). Функциональное значение этих выростов не выяснено.

Эндоспоры прокариот характеризуются очень низким уровнем метаболизма, они очень устойчивы к воздействию факторов внешней среды: высоким и низким температурам, обезвоживанию, литическим факторам, высокой кислотности среды, радиации, механическим воздействиям и т. п. Механизмы устойчивости эндоспор пока мало изучены. Считается, что эндоспорам прокариот придают устойчивость обезвоженное состояние цитоплазмы, термостойкость споровых ферментов, наличие дипиколиновой кислоты и большое количество двухвалентных катионов. Устойчивости эндоспор способствуют также поверхностные структуры: мембраны, кортекс, покровы, механически защищающие содержимое эндоспоры от проникновения извне агрессивных веществ.


Сформировавшиеся покоящиеся эндоспоры могут находиться в жизнеспособном состоянии в течение разного времени: от нескольких суток до 1000 лет и более. Ниже приводится зависимость выживания спор разных групп бактерий от повреждающих факторов (высокой температуры и высушивания).

Таблица 1


При микроскопическом исследовании эндоспоры хорошо видны. В сомнительных случаях можно использовать специальное окрашивание, Для чего фиксированный препарат надо прокипятить с карболовым раствором фуксина. Эндоспоры прочно связывают краситель и не обесцвечиваются даже при обработке этанолом или уксусной кислотой; все остальное содержимое клетки при этом обесцвечивается.

Эндоспора содержит почти все сухое вещество клетки, но занимает в 10 раз меньший объем. Эндоспоры не являются обязательной стадией жизненного цикла бацилл. При благоприятных условиях питания бациллы могут неограниченное время размножаться делением. Образование эндоспор начинается только тогда, когда не хватает питательных веществ и когда в избытке накапливаются продукты обмена.

В благоприятных условиях большинство эндоспор прорастает. Процент прорастания эндоспор можно увеличить, прогрев одни споры в воде при 60 °С в течение 5 мин, другие -- при 100 °С в течение 10 мин. Тепловой шок должен проводиться непосредственно перед высевом.

В пищевой промышленности для уничтожения термоустойчииых эндоспор бактерий прибегают к дорогостоящей стерилизации пищевых продуктов. Например, если при пастеризации (нагревание при 80 °С в течение 10 мин) пищевых продуктов вегетативные клетки спорообразующих бактерий и все остальные бактерии погибают, то термоустойчивые эндоспоры выдерживают значительно более сильное нагревание, а некоторые споры -- даже кипячение в течение нескольких часов.

Классификация бактерий

По мере описания все новых бактерий появилась острая необходимость систематизировать и сравнивать с известными вновь описываемые культуры. В конце XIX - начале XX в. появились определители бактерий, которые помогают классифицировать, идентифицировать вновь выделенные бактерии по определенным признакам. При классификации основной задачей является определение вида бактерий.

Вид -- это группа близких между собой организмов, имеющих одинаковое происхождение и характеризующихся определенным и морфологическими, биохимическими и физиологическими признаками, способствующими приспособлению к определенной среде обитания.

Виды объединяются в роды, роды -- в семейства, затем следуют порядки, классы, отделы, царства. Вид бактерий описывают с помощью признаков: морфологических, культуральных, физиолого-биохимических и др.

Морфологическими признаками являются форма клетки, наличие или отсутствие жгутиков, капсулы, способность к спорообразованию, окрашивание по Граму.

К культуральным признакам относятся общий вид бактериальной колонии, наличие пигмента и др.

Физиолого-биохимическими признаками являются способ получения энергии, потребности в питательных веществах, отношение к факторам внешней среды и др.

Самым современным определителем для идентификации бактерий является «Краткий определитель бактерий Берги», наиболее полно описывающий известные бактерии. В 8-м издании этого определителя все бактерии, за исключением цианобактерий, сгруппированы в 19 частях. Ниже приводитсяих краткая характеристика:

Часть 1. Фототрофные бактерии. В этой части сгруппированы фотосинтезирующие бактерии, характеризующиеся специфическим набором пигментов и особым типом фотосинтеза: пурпурные бактерии и зеленые серобактерии. Пигменты представлены различными видами бактериохлорофилла и каротиноидами. Фотосинтез не сопровождается выделением кислорода. Это преимущественно водные микроорганизмы.

Часть 2. Скользящие бактерии. В состав бактерий этой части отнесены два порядка: миксобактерии (Mixobacteriales) и цитофаги (Cytoppagales). К первому порядку относятся бактерии, образующие слой слизи вокруг клетки. Бактерии подвижны. Миксобактерии образуют так называемые плодовые тела, внутри которых клетки переходят в покоящееся состояние. Ко второму порядку относятся бактерии, по типу движения сходные с миксобактериями, но не образующие плодовых тел. В состав порядка входит четыре семейства преимущественно водных бактерий.

Часть 3. Хламидобактерии. В состав этой части входят нитевидные бактерии, окруженные общим влагалищем, слизистой оболочкой. Влагалище состоит из гетерополисахарида, часто инкрустированного окислами железа или марганца. Встречаются в водоемах и почве.

Часть 4. Почкующиеся и (или) стебельковые бактерии. В состав этой части входят бактерии, образующие придатки (стебельки), состоящие из слизи и не связанные с цитоплазмой клетки, а также бактерии, образующие нитевидные клеточные выросты -- простеки. Бактерии широко распространены в почве и водоемах.

Часть 5. Спирохеты. Эта часть объединяет бактерии, имеющие вид тонких спиралевидных одноклеточных форм. Многие бактерии патогенны, вызывают сифилис, возвратный тиф.

Часть 7. Грамотрицательные аэробные палочки и кокки. В эту часть бактерий входят пять семейств, одно из которых -- Pseudomonas --широко распространено в природе: в воздухе, почве, морских и пресных водах, илах, сточных водах, в пищевых продуктах. В последних бактерии этого семейства вызывают порчу.

Часть 8. Грамотрицательные факультативно-анаэробные палочки. В состав этой части входят два семейства: энтеробактериацеа (Enterobacteriaceae) и вибрионацеа (Vibrionaceae). Энтеробактериацеа представляет собой Грамотрицательные, бесспоровые, аэробные или факультативно-анаэробные палочки. Наиболее изученными представителями этого семейства являются бактерии Escherichia coli, которые всегда содержатся в кишечнике человека и животных, поэтому о загрязнении воды и пищевых продуктов судят по наличию в них Е. coli. E. coli относятся к числу условнопатогенных бактерий. К числу возбудителей тяжелых кишечных заболеваний человека принадлежат бактерии этого семейства из родов сальмонелла (Salmonella) и шигелла (Shigella). Бактерии Salmonella typhi являются возбудителями брюшного тифа. Бактерии рода Shigella -- возбудители бактериальной дизентерии. К семейству вибрионацеа (Vibrionaceae) относятся бактерии вида Vibrio cholerae -- возбудители азиатской холеры.

Часть 9. Грамотрицательные анаэробные бактерии. Бактерии, сгруппированные в этой части, относятся к семейству Bacteroidaceae. Все они представляют собой палочки; это облигатные анаэробы. Основное место обитания этих бактерий -- кишечник человека и животных, пищеварительный тракт насекомых. Некоторые виды являются патогенными и вызывают различные поражения кожи, ряда органов и тканей тела.

Часть 13. Метанобразующие бактерии. Эта часть представлена одним семейством -- Methanobacteriaceae. Все бактерии однородны по физиологическим признакам: это облигатные анаэробы; главный продукт энергетического обмена -- метан. Основные места обитания -- болота, различные очистительные сооружения, рубец жвачных животных.

Часть 14. Грамположительные кокки. К этой части относятся две группы. Первая группа -- аэробные и (или) факультативноанаэробные бактерии семейств Micrococcaceae и Streptococcaceae. Вторая группа -- облигатные анаэробы семейств Peptococcaceae. Бактерии семейства Micrococcaceae -- это кокки, делящиеся более чем в одной плоскости, иногда не расходятся, образуя скопления сферической или неправильной формы. Энергию получают за счет дыхания или брожения. В основном это сапрофиты, разрушающие многие сложные органические вещества и выполняющие функцию «мусорщиков». Многие из них являются возбудителями порчи пищевых продуктов. Среди них есть патогенные формы, относящиеся к роду Staphylococcus. Развиваясь на пищевых продуктах, вырабатывают токсины, вызывающие отравления.

Бактерии семейства Streptococcaceae -- это кокки, неподвижные, бесспоровые, факультативно-анаэробные. Бактерии родов Streptococcus, Pediococcus, Aerococcus являются гомоферментативными молочнокислыми; бактерии рода Leuconostoc -- гетероферментативными молочнокислыми.

Бактерии семейства Peptococcaceae -- это облигатно-анаэробные кокки, обитающие в почве, на поверхности злаков, в ротовой полости, желудочно-кишечном тракте, дыхательных путях человека и животных; некоторые виды являются патогенными.

Часть 15. Палочки и кокки, образующие эндоспоры. Эта часть представлена одним семейством -- Bacillaceae, в состав которого входит пять родов. Два из них -- бациллы (Bacillus) и клостридии (Clostridium) -- наиболее многочисленны и представляют наибольший интерес. Бациллы -- это палочковидные бактерии; большинство из них подвижны; образуют эндоспоры; облигатные или факультативные аэробы. Бациллы синтезируют различные литические ферменты, расщепляющие белки, жиры, полисахариды и другие макромолекулы. Некоторые виды образуют антибиотики. Большинство сапрофиты. Основным местом обитания является почва. Многие бациллы являются возбудителями порчи пищевых продуктов. Среди них есть патогенные для человека и животных виды, например Bacillus anthracis -- возбудитель сибирской язвы.

В состав рода Clostridium входят палочки, отличающиеся от бацилл формой спорообразования и облигатно-анаэробным способом существования. Вызывают маслянокислое брожение, большинство клостридий -- сапрофиты, обитатели почвы. Некоторые виды живут в кишечнике человека и животных, например Cl. teteni -- возбудитель столбняка, Cl. perfringens -- возбудитель газовой гангрены, CL botulinum -- продуцент экзотоксина, одного из самых сильных биологических ядов.

Часть 16. Грамположителъные аспорогенные палочковидные бактерии. Эта часть также представлена одним семейством -- Lactobacillaceae, в состав которого входит один род -- Lactobacillus. Бактерии получают энергию за счет гомоферментативного или гетероферментативного молочнокислого брожения, широко распространены в природе: в почве, на разлагающихся остатках животного и растительного происхождения, в кишечнике позвоночных, в молоке, молочных продуктах. Встречаются патогенные формы. Многие бактерии используются при изготовлении кисломолочных продуктов, сыров, квашения овощей, теста и др.

Часть 17. Актиномицеты и родственные организмы. Эта часть объединяет коринебактерии, пропионово-кислые бактерии и актипомицеты.

Из существующих видов пропионово-кислых бактерий наибольший интерес в микробиологии продовольственных товаров представляет вид Propionibacterium freudenreichii рода Propionibacterium. Бактерии этого рода -- грамположительные неподвижные палочки, не образующие спор. Это облигатные анаэробы. Пропионово-кислые бактерии широко используются при производстве сыров.

К актиномицетам относятся бактерии, образующие ветвящиеся нити, иногда развитый мицелий. Имеют разные способы размножения. Большинство актиномицетов размножаются с помощью спор, образующихся на спорангиях, которые могут быть длинные пли короткие, прямые или спиралевидные с разным числом завитков и расположением. Актиномицеты представлены двумя семействами: Mycobacteriaceae и Streptomycetaccae. Семейство Mycobacteriaceae представлено одним родом -- Mycobacterium, характерным признаком которого является образование ветвящихся форм в молодом возрасте.

Большинство микобактерий являются сапрофитами, живут в почве и используют самые различные органические соединения: белки, углеводы, жиры, воска, парафины. Некоторые виды патогенны, например М. tuberculosis -- возбудитель туберкулеза, М. leprae -- возбудитель проказы.

Представители семейства Streptomycetaceae образуют хорошо развитый воздушный мицелий, размножаются спорами, формирующимися на концах гиф, кусочками мицелия. Их около 500 видов. Многие стрептомицеты синтезируют антибиотики, которые проявляют активность против бактерий, грибов, водорослей, простейших, фагов и обладают противоопухолевым действием.

Часть 18. Риккетсии. В состав этой части входят два порядка бактерий -- риккетсии (Rickettsiales) и хламидии (Chlamydiales).

Риккетсии -- это неподвижные бактерии, грамотрицательньк размножаются только в клетках хозяев, вызывая риккетсиозы. Есть непатогенные виды.

Часть 19. Микоплазмы. К микоплазмам относятся прокариот у которых отсутствует клеточная стенка, они ограничены одно трехслойной мембраной. Клетки очень мелкие, иногда ультрамикроскопические, плеоморфные. Способ размножения не вполне ясен; по-видимому, происходит за счет образования кокковидных структур «элементарных телец», возможно бипарное деление и размножение почкованием. Стадии покоя неизвестны. По объему генетической информации, содержащейся в геноме, микоплазмы занимают промежуточное положение между Е. coli и Т-фагами.

Студент должен знать: морфологию бактерий, методы микроскопических исследований, правила окраски бактерий.

Ключевые слова и термины: нуклеоид. Капсула. Спора. Жгутики. Цитоплазматическая мембрана. Клеточная стенка.

МОРФОЛОГИЯ БАКТЕРИЙ

Бактерии могут иметь округлую, палочковидную или извитую форму. Круглые бактерии называются кокками (одна клетка - кокк). Слово «кокк» произошло от греческого слова «коккос», что значит семя. Обычно кокки имеют правильную шарообразную форму. Некоторые кокки после деления в одной плоскости остаются связанными парами. Это диплококки. Реже они несколько заострены, как пневмококки - возбудители бактериальных пневмоний (рис. 2.1), или имеют вид кофейных зерен или бобов, как менигококки - возбудители менингитов. Точно так же выглядят и гонококки - возбудители венерической болезни гонореи (рис. 2.2).

По расположению клеток после деления кокки могут быть подразделены на несколько групп, у некоторых из них после деления клетки расходятся и располагаются поодиночке. Такие формы называются микрококками. Иногда кокки при делении образуют скопления, напоминающие по форме гроздья винограда. Подобные формы называются стафилококками (рис. 2.3).

Рис. 2.1.



У стрептококков деление также происходит в одной плоскости, но клетки не отделяются друг от друга, и поэтому образуются различной длины цепочки (рис. 2.4).


Рис. 2.4.

Некоторые кокки делятся в трех взаимно перпендикулярных плоскостях, что приводит к образованию своеобразных скоплений кубической формы. Такие скопления кокков называются сардинами (рис. 2.5). Если после деления в двух взаимно перпендикулярных плоскостях клетки располагаются в виде сочетаний из четырех кокков, то такие скопления называются тетракокками (рис. 2.6).

Рис. 2.5.

Рис. 2.6.

У палочковидных бактерий концы бывают округлыми или заостренными. Разнообразно и расположение клеток после деления - одиночные палочки, по две, цепочками и т.п. (рис. 2.7).

Рис. 2.7.

Нередко встречаются извитые, или спиральные, бактерии. Имеются две группы извитых форм бактерий. К первой группе относятся спириллы, имеющие форму длинных изогнутых (один или несколько завитков) палочек и вибрионы, представляющие лишь часть витка спирали и похожие на запятую. Вторая группа извитых бактерий - спирохеты - представляет собой длинные и тонкие клетки с большим количеством мелких завитков (рис. 2.8).


Бактериальные клетки очень малы, их размеры исчисляются микрометрами (мкм). Кокки имеют диаметр около 0,5-1,0 мкм. Ширина палочковидных форм бактерий составляет от 0,5 до 1,0 мкм, а длина может достигать нескольких десятков мкм. Размер бактерий может значительно изменяться в зависимости от температуры, состава среды и т.д.

Бактериальная клетка окружена оболочкой. В цитоплазме содержатся ядерный аппарат, вакуоли, аналоги митохондрий - мезозомы, рибосомы, а также различного рода включения, обычно образующиеся в процессе обмена веществ (рис. 2.9).

Клеточная оболочка обладает определенной ригидностью (жесткостью), вместе с тем эластичностью и способна изгибаться. Клеточную оболочку можно разрушить ультразвуком, ферментом лизоцимом, тонкой иглой и т.д. При этом содержание клетки - цитоплазма - с ее включениями вытекает и приобретает шаровидную форму. Отсюда следует, что оболочка придает бактериальной клетке определенную форму.


Клеточные оболочки обнаруживают определенную организацию. Масса клеточной оболочки составляет около 20% всей массы клетки. Клеточная оболочка часто бывает окружена слизистым слоем, который различается у отдельных бактерий как по толщине, так и по консистенции. Этот слой называется капсулой (рис. 2.10).

Рис. 2.10.

По химическому составу капсулы бактерий можно разделить на 2 типа. Один тип капсул состоит из полисахаридов - декстранов, другой из полипептидов. Многие бактерии содержат в капсуле пептиды, состоящие главным образом из цепочек молекул глутаминовой кислоты.

Капсула защищает клетку от неблагоприятных воздействий окружающей внешней среды. Бактерии, обладающие капсулами, могут жить в такой среде, в которой рост некапсулированных бактерий ограничен. В некоторых случаях вещество капсулы может использоваться бактериями как пищевой резерв, когда отсутствует другая пища.

К клеточной оболочке бактериальной клетки тесно прилегает внешний слой цитоплазмы - цитоплазматическая мембрана. Это не ригидное образование, иногда называемое осмотическим барьером клетки, действует как полупроницаемая мембрана и контролирует транспорт ионов и молекул в клетку и из клетки. Цитоплазматическая мембрана составляет около 10% сухой массы клетки, состоит из полипротеидов и содержит до 75% липидов клетки. Нередко мембрана дает внутрицитоплазматические ответвления (инвагинации), приводящие к образованию особых телец - мезосом.

Мембрана и мезосомы выполняют функции, свойственные митохондриям высших организмов, в которых локализованы разнообразные ферментные системы.

Под цитоплазматической мембраной находится цитоплазма. Она обычно рассматривается как коллоидная система, состоящая из воды, белков, жиров, углеводов, минеральных соединений и других веществ, соотношение которых зависит от вида бактерий и их возраста.

Детальные исследования микромолекулярной организации и субмикроскопической структуры цитоплазмы выявили ее мелкогранулярный характер. Многие из этих гранул являются рибосомами - частицами с богатым содержанием белка и рибонуклеиновой кислоты. В бактериальной клетке содержится приблизительно до 10 000 рибосом, осуществляющих синтез белков в бактериальной клетке.

В цитоплазме бактерий имеются гранулы запасных питательных веществ. В качестве резервных питательных веществ в клетках бактерий могут накапливаться вещества, состоящие из углеводов - гликогена (животного крахмала) или гранулезы (близкой к крахмалу). При недостаточном поступлении углеродсодержащих веществ в среду гликоген или гранулеза постепенно исчезают из клеток бактерий.

У некоторых видов бактерий в клетках накапливаются жир и во- лютин. Последний состоит из неорганических полифосфатов и полиметафосфатов, а также веществ, близких к нуклеиновым кислотам. Волютин обнаруживается в виде крупных, хорошо видимых гранул, образующихся в больших количествах на средах, богатых глицерином или углеводами.

В цитоплазме бактериальных клеток расположен ядерный аппарат (иногда называемый нуклеоидом). У бактерий постоянно обнаруживаются дискретные (прерывистые) форменные структуры, содержащие дезоксирибонуклеиновую кислоту (ДНК), а также белок и обладающие функцией ядра или, точнее, хромосом высших форм организмов. Обычно ядерное образование (по одному на клетку) располагается в центральной части внутреннего содержимого клетки бактерий. В отличие от клеток высокоорганизованных организмов нуклеоид бактерий не отделен от цитоплазмы мембраной.

Многие бактерии передвигаются с помощью особых нитевидных придатков - жгутиков, обусловливающих подвижность бактерий благодаря своим спиральным волнообразным движениям вследствие ритмичных сокращений (рис. 2.11).


Рис. 2.11.

Кокки, за исключением отдельных видов, не имеют жгутиков. Среди цилиндрических форм бактерий приблизительно около половины имеют жгутики. Из спиралевидных бактерий большинство подвижны.

Бактерии с одним жгутиком называются монотрихами, имеющие на одном или на обоих концах тела пучок жгутиков - лофо- трихами. Перитрихами называются бактерии, имеющие жгутики по всей поверхности тела. Количество жгутиков у различных видов бактерий может значительно изменяться. Например, вибрионы имеют 1-3 жгутика, а у палочковидных бактерий обнаружено от 50 до 100 жгутиков.

Толщина жгутиков - около 0,01 мкм, а длина их во много раз больше длины тела бактерий. В химическом отношении жгутики представляют собой белок и денатурируются при нагревании.

Жгутики не являются жизненно важной структурой для бактериальной клетки. Так, бактерии, обладающие жгутиками, можно вырастить в таких условиях, при которых у них не развиваются жгутики. У подвижных бактерий наблюдаются «фазовые вариации», т.е. жгутики присутствуют в течение одной фазы развития и отсутствуют в другой. Жгутики бактерий можно разрушить, но клетка будет оставаться жизнеспособной.

Свое начало жгутики берут от плотного тельца в цитоплазме, но вместе с тем они прикрепляются не только к цитоплазматической мембране, но и к клеточной. Протопласты, освобожденные от клеточной оболочки, сохраняют жгутики.

Бактериальные клетки - монотрихи, перемещаясь с помощью жгутика вдоль своей оси, совершают волнообразное движение. У пе- ритрихов наблюдается оживленное кувыркание.

Скорость движения бактериальных клеток зависит от особенностей их аппарата движения и свойств среды - ее вязкости, температуры, pH, осмотического давления идр. Некоторые бактерии могут передвигаться при благоприятных условиях на расстояние, превышающее размеры клетки в 10-15 раз. Большинство же бактерий за секунду проходит расстояние, равное размеру их клетки.

Кроме жгутиков клетки бактерий могут иметь прямые отростки - фимбрии. Фимбрии значительно короче и тоньше жгутиков, но более многочисленны и обнаружены как у подвижных, так и у неподвижных организмов.

Некоторые бактерии способны образовывать споры (эндоспоры), тельца сферической или эллиптической формы, очень устойчивые против неблагоприятных условий. Споры преломляют свет и четко видны в световом микроскопе. Обычно в клетке образуется одна спора - эндоспора. Споры можно рассматривать как приспособление организма для перенесения неблагоприятных внешних условий. Они не являются органами размножения (рис. 2.12).

Формирование спор зависит от условий роста. Споры могут оставаться живыми в условиях, когда вегетативные клетки, т.е. не образовавшие спор, погибают. Большинство спор хорошо переносит высушивание, многие споры нельзя убить даже при кипячении в течение нескольких часов. В сухом состоянии споры погибают лишь при сильном нагревании (15-160 °С) в течение нескольких часов. Споры отдельных видов бактерий отличаются своей термоустойчивостью.


Рис. 2.12. Споры бактерий

В спорах содержится мало воды (вследствие обезвоживания), что предохраняет белки от денатурации при высоких температурах. Устойчивость спор к неблагоприятным факторам определяется также специальной структурной формой, которую принимает белок споры в процессе спорообразования.

Диаметр споры приблизительно равен диаметру клетки, в которой она образовалась, или несколько превышает его. У некоторых бактерий спора формируется на конце клетки, которая при этом несколько расширяется. Клетка в таком случае приобретает вид барабанной палочки. У других бактерий спора образуется в центре клетки, которая либо не меняет формы (род Bacillus ), либо в середине расширяется и принимает вид веретена (род Clostridium). Вегетативная часть клетки разрушается и исчезает, и остается только преломляющая свет спора. Спора трудно окрашивается красителями.

Попадая в благоприятные условия, спора начинает «прорастать». При этом она разбухает не только в результате поглощения воды, но и вследствие роста клетки за счет резервного материала. Затем оболочки под влиянием давления, вызванного ростом, разрываются и дают трещину. Возникает новая вегетативная клетка. Способ, которым клетка выходит из споры, различается у разных видов и может использоваться в качестве видовой характеристики.

Имеются микроорганизмы, образующие относительно устойчивые к неблагоприятным условиям клетки - цисты. Цистам свойственна утолщенная оболочка.

Благодаря жесткости своей стенки клетка сохраняет форму: шаровидную, палочковидную или извитую. Оболочка защищает клетку, сохраняя ее структурную целостность при изменении внешних условий, в частности при осмотических воздействиях. Наряду с мембраной она действует как полупроницаемый барьер, обеспечивающий избирательное проникновение питательных веществ из окружающей среды и выделение высокомолекулярных соединений - токсинов или ферментов, участвующих во внеклеточном переваривании субстратов. Клеточная стенка детерминирует антигенную специфичность видов, является местом адсорбции фагов на клетке и участвует в процессах движения и деления.

При изучении химического состава клеточных стенок грамполо- жительных и грамотрицательных бактерий выявились существенные различия в их качественном и количественном составе (рис. 2.13).

За механическую прочность стенки у этих групп микроорганизмов ответствен один и тот же гетерополимер - пептидогликан, хотя количественное содержание его и локализация различны. Атакой компонент клеточной стенки, как тейхоевые кислоты, содержится в стенках только грамположительных бактерий. Электронномикроскопическое изучение срезов поверхностных слоев грамположительных и грамотрицательных бактерий также подтвердило неоднородность структуры их клеточных стенок.

Морфология микроорганизмов - это наука, занимающаяся изучением их формы, строения, способов размножения и передвижения.

Основы и открытие

Данная наука достаточно обширная и занимается изучением многих вопросов. Несмотря на то что все микроорганизмы невидимы для человеческих глаз, они все же существуют и бывают как «хорошими» для организма, так и плохими.

Микробы можно встретить во всех сферах проявления жизни: в воде, почве, воздухе, а также в других организмах.

Впервые о бактериях узнал знаменитый ученый Левенгук, занимающийся изготовлением первых линз, позволяющих увеличивать предметы до двухсот раз. И то, что он увидел, полностью поразило его. Ученый узнал, что микробы повсюду, и все они отличаются друг от друга. Таким образом, Левенгук стал открывателем микроорганизмов.

Луи Пастер начал заниматься таким вопросом, как морфология микроорганизмов, и выяснил, что они имеют не только разное строение и форму, но также отличаются и способами передвижения и размножения. Им было установлено, что некоторые для человеческого организма, а некоторые, наоборот, полезны. Также он открыл, что такие микробы, как дрожжи, способны приводить к процессам брожения.

Морфология организмов дала возможность многим ученым изобрести различные вакцины, помогающие справляться со смертельно опасными человеческими заболеваниями.

Классификация

Микроорганизмы считаются мельчайшими представителями, обитающими на планете Земля. Чаще всего они являются одноклеточными, и рассмотреть их можно только в очень мощный микроскоп.

Размер данной формы жизни измеряется в микрометрах и нанометрах. В природе их встречается огромное количество, поэтому они имеют значительные различия в строении, способах существования и передвижения.

Согласно установленной делятся на неклеточные, одноклеточные и многоклеточные. При этом разделяются они на такие категории: грибы, дрожжи, фаги, бактерии и вирусы.

Немного о бактериях

При изучении такой темы, как морфология микроорганизмов, большое внимание нужно уделить бактериям. Чаще всего они являются одноклеточными организмами (хотя существуют и исключения) и имеют довольно разнообразные размеры. Некоторые из них достигают 500 мкм.

Существует несколько видов бактерий, различающихся своей формой. Сюда можно отнести палочковидных, шаровидных и извитых организмов. Рассмотрим подробнее каждый вид.

В медицине имеют название «кокки». Чаще всего они круглой формы, хотя иногда встречаются также овальные и бобовидные микроорганизмы. Могут располагаться не только поодиночке, но и парами, в виде цепочек или виноградных лоз.

Многие из них оказывают отрицательное влияние на человеческий организм. Например, стрептококки вызывают аллергию, а стафилококки становятся причиной образования гнойных и воспалительных процессов.

Бактерии, имеющие форму палочек, считаются самыми распространенными. К ним относятся микроорганизмы, приводящие к туберкулезу, брюшному тифу, дизентерии.

Некоторые виды палочек при плохих условиях окружающей среды образуют споры. Называются такие бактерии бациллами.

Образование спор - это очень интересный и сложный процесс, так как сама клетка такого типа очень сильно отличается от обычной бациллы. Каждая спора имеет плотную и крепкую оболочку, обладая при этом ничтожно малым количеством воды. Такая клетка вообще не нуждается в питательных веществах, она перестает двигаться и размножаться. При этом споры могут находиться в ужасных для жизнедеятельности условиях, таких как слишком высокие или низкие температуры. Но как только наступает благоприятная для них среда, они сразу же начинают свою жизнедеятельность.

Извитые бактерии чаще всего встречаются в виде запятой или завитков. Обычно подобные микроорганизмы вызывают такие заболевания, как сифилис и холера.

Многие бактерии способны передвигаться, и делают они это с помощью жгутиков различной формы и длины.

Бактерии размножаются с помощью деления. Такой процесс проходит очень быстро (каждые пятнадцать-двадцать минут). Самое быстрое размножение можно заметить на пищевых продуктах и в другой среде, обладающей высокой питательностью.

Вирусы

Вирусы можно отнести к особой группе микроорганизмов, которая не имеет клеточного строения. Такие формы жизни крайне малы, поэтому увидеть их можно только под электронным микроскопом. Некоторые виды вирусов могут состоять лишь из белков и нуклеиновой кислоты.

Каждый человек хотя бы раз в жизни сталкивался с заболеваниями, вызываемыми данными микроорганизмами. Сюда можно отнести грипп, гепатит, корь и многие другие заболевания.

Грибы

Данная группа микроорганизмов тоже является особой. Грибы не имеют в составе хлорофилла, а также не производят синтез органических веществ. Они нуждаются в уже готовых продуктах пропитания. Именно поэтому грибы чаще всего можно встретить на плодородных почвах или на пищевых продуктах.

Для грибов характерны разные способы размножения. Сюда можно отнести не только бесполый и половой способ, но также и вегетативный.

Дрожжи

Дрожжи являются одноклеточными неподвижными организмами, имеющими самую разнообразную форму. Встречаются как круглые и овальные виды, так и палочковидные и серповидные.

Этот вид микроорганизмов довольно широко распространен. Их можно встретить на растениях, в почве, а также в пищевых продуктах, которые при этом портятся. Некоторые из них способны превращать сахара в углекислый газ и этиловый спирт. Такой процесс называется брожением. Он очень востребован в пищевой промышленности.

Морфология микроорганизмов: бактерии

Стоит учесть, что бактерии - это форма жизни, появившаяся на нашей планете самой первой. Их основная особенность заключается в строении клетки. В отличие от эукариот (клетки, содержащие ядро), прокариоты (бактерии) ядра не содержат.

Такие микроорганизмы обитают во всех сферах жизни и непосредственно влияют на человеческую жизнь в том числе.

Ученые классифицируют бактерии также по принципу полезности. Существуют полезные виды и вредные. Полезные участвуют в процессе фотосинтеза, оказывают положительное влияние на пищеварительную систему человека, а также очень часто применяются в промышленности.

Изучение морфологии микроорганизмов дает общее представление об их существовании, а также дает возможность узнать их пользу и вред в тех или иных ситуациях.

Стандартная клетка бактерии состоит из таких составляющих:

    Плазматическая мембрана. Данный элемент клетки ничем не отличается от мембраны эукариот.

    Мезосома - особая составляющая, с помощью который возможно прикрепление к клетке наследственного материала.

    Нуклеотид. Представляет собой не полностью сформированное ядро. В нем находятся все хромосомы.

    Рибосомы - особые органоиды, занимающие около сорока процентов клеточного пространства.

Кроме перечисленных выше элементов, в состав клетки прокариот также входят: капсула, стенка клетки и слизистый чехол. Многие бактерии умеют самостоятельно передвигаться и цепляться за поверхности. Делают они это с помощью специальных жгутиков и ворсинок.

Морфология микроорганизмов: микробиология вирусов, грибов и дрожжей

Вирус - это особый организм, не имеющий клеточного строения. Каждая его частица состоит из оболочки, а также из расположенной по центру сердцевины информации.

А вот строение сложнее, чем у других микроорганизмов. В состав их клеток также входят ядра и вакуоли. По строению они очень похожи на растительные, но имеют другую форму. Выглядят как длинные и ветвящиеся нити, которые называются гифами. Обычно такие гифы образуют мицелий.

Клетки дрожжей имеют в составе все элементы эукариотов, однако кроме этого, им присущи и другие компоненты. Их уникальность состоит в том, что они обладают качествами как животных, так и растений.

Обменные процессы

Морфология и физиология микроорганизмов позволяют разобраться в основных этапах их жизнедеятельности. Бактерии, точно так же как и более сложные формы жизни, осуществляют синтез липидов, жиров и углеводов. Но при этом процессы, протекающие в их клетках, отличаются.

Ученые выделяют два типа эукариотов: автотрофы и гетеротрофы.

Первый тип способен синтезировать органические вещества из неорганических соединений, а вот второй производит процессы трансформации органических компонентов.

Существуют также сапрофиты. Они питаются за счет синтезированных веществ умершими организмами.

Морфология строения микроорганизмов - это довольно важная составляющая изучения жизни бактерий. Однако кроме строения клетки также стоит учитывать и типы метаболизма. Конструктивный тип был рассмотрен выше. Существует также и энергетический обмен.

Ученые выделяют такие типы получения энергии:

    Фотосинтез. Данная процедура может осуществляться как при наличии кислорода, так и без него.

    Брожение. Эта энергетическая реакция происходит благодаря отрыву молекул, которые переносят фосфорную кислоту на АДФ.

    Дыхание. Микроорганизмы могут дышать не только за счет кислорода, но также и с помощью органических и минеральных соединений.

Передача наследственной информации

Существует несколько способов передачи наследственной информации прокариотами (морфология и систематика микроорганизмов также описаны в этой статье). Рассмотрим подробно каждый из них:

    конъюгация - метод передачи наследственной информации от одного микроорганизма к другому только методом их непосредственного контакта;

    трансформация - тип передачи, во время которого доноры делятся информацией с реципиентами;

    трансдукция - метод непосредственной передачи наследственного материала с помощью фагов.

Методы исследования морфологии микроорганизмов

Для наиболее точного изучения строения прокариот используют такие методы, как микроскопия и окрашивание.

Морфологии микроорганизмов производятся за счет электронных и световых микроскопов. Специалисты разработали несколько методов для наиболее точного получения результатов.

Морфологический метод исследования позволяет с помощью микроскопа рассмотреть строение клетки, а также ее подвижность и способность к размножению.

Физиологический метод позволяет рассмотреть реакцию микроорганизмов на различные раздражители, а также способность к адаптации к различным условиям.

С помощью культурального метода можно провести исследования микроорганизма в питательной среде. Эта методика позволяет выявлять способности к росту и размножению.

Морфология микроорганизмов (микробиология) - это очень важная наука, занимающаяся изучением бактерий и других одноклеточных. Не стоит думать, что бактерии причиняют только вред природе и человеческому организму. Это далеко не так. Без них жизнь на планете Земля была бы невозможной.